Laws!

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

28th August 2018
class Monoid m where
 mempty :: m
 (<>) :: m -> m -> m

Left identity: mempty <> y = y
Right identity: x <> mempty = x
Associativity: (x <> y) <> z = x <> (y <> z)
class Monoid m where
 mempty :: m
 (<>) :: m -> m -> m

 Left identity: mempty <> y = y
 Right identity: x <> mempty = x
 Associativity: (x <> y) <> z = x <> (y <> z)
data Sum = Sum Int

instance Monoid Sum where
 mempty = Sum 0
 Sum x <> Sum y = Sum (x + y)
Left identity: \[0 + y = y \]

Right identity: \[x + 0 = x \]
Left identity:
\[0 + 5 = 5 \]

Right identity:
\[x + 0 = x \]
Left identity:
\[0 + 5 = 5 \]

Right identity:
\[7 + 0 = 7 \]
Associativity:

\[3 + 4 + 5 \]

\[(3 + 4) + 5 \]

\[3 + (4 + 5) \]
$$\frac{3}{4} + \frac{5}{4} + \frac{5}{3}$$

$$\frac{3}{4} + \frac{5}{4} + \frac{5}{3}$$
12

3 + 4

+ 5

+
So?
(1 + (2 + (3 + 4) + 5)) + 6 + 7
\texttt{mconcat} :: \texttt{Monoid} \ m \Rightarrow \ [m] \rightarrow \ m
mconcat :: Monoid m => [m] -> m

mconcat list =
 case list of
 [] -> mempty
 (h:t) -> h <> mconcat t
\texttt{mconcat [\texttt{Sum} 1, \texttt{Sum} 2, \texttt{Sum} 3, \texttt{Sum} 4]}
mconcat [\textbf{Sum} 1, \textbf{Sum} 2, \textbf{Sum} 3, \textbf{Sum} 4]

\textbf{Sum} 1 \texttt{<>} (\textbf{Sum} 2 \texttt{<>} (\textbf{Sum} 3 \texttt{<>} (\textbf{Sum} 4 \texttt{<> mempty}))))
mconcat \[\text{Sum } 1, \text{Sum } 2, \text{Sum } 3, \text{Sum } 4\]

\[
\text{Sum } 1 \langle\rangle (\text{Sum } 2 \langle\rangle (\text{Sum } 3 \langle\rangle (\text{Sum } 4 \langle\rangle \text{mempty})))
\]

\[\Rightarrow \text{Sum } 10\]
mconcatR :: NotMonoid m => [m] -> m

mconcatR list =
 case list of
 [] -> mempty
 (h:t) -> h <> mconcatR t
mconcatR :: NotMonoid m => [m] -> m

mconcatR list =
 case list of
 [] -> mempty
 (h:t) -> h <> mconcatR t

mconcatL :: NotMonoid m => [m] -> m

mconcatL list =
 helper mempty list
 where
 helper acc xs =
 case xs of
 [] -> acc
 (h:t) -> helper (acc <> h) t
foldr :: (a -> b -> b) -> b -> [a] -> b

foldl :: (b -> a -> b) -> b -> [a] -> b
Laws give us **freedom** when working **in terms of** our abstractions
instance Monoid [a] where
 mempty = []
 left <> right =
 case left of
 [] -> right
 (h:t) -> h : (t <> right)
instance Monoid [a] where
 mempty = []
 left <> right =
 case left of
 [] -> right
 (h:t) -> h : (t <> right)

Left identity: [] ++ y = y

Right identity: x ++ [] = x

Associativity: (x ++ y) ++ z = x ++ (y ++ z)
greeting :: [Char] -> [Char]

greeting name =
 "(" <> "Hello, " <> name <> ", how are you?" <> ")"
greeting :: [Char] -> [Char]
greeting name =
 "(" <> "Hello, " <> name <> ", how are you?" <> ")"

between op cl x =
 op <> x <> cl
greeting :: [Char] -> [Char]

greeting name =
 between "(" ")" $
 "Hello, " <> name <> " , how are you?"

between op cl x =
 op <> x <> cl
greeting :: [Char] -> [Char]

greeting name =
 between "(" ")" $
 between "Hello, " ", how are you?"
 name

between op cl x =
 op <> x <> cl
Hello, name, how are you?
Hello, name, how are you?
Laws let us **refactor** and **reuse** more.
([1, 2, 3] <> [4, 5, 6]) <> [7, 8, 9]
([1, 2, 3] <> [4, 5, 6]) <> [7, 8, 9]

(:(
\[
1 : 2 : 3 : \text{Nil} \quad 4 : 5 : 6 : \text{Nil} \quad 7 : 8 : 9 : \text{Nil}
\]
\[
1 : 2 : 3
\]
1 : 2 : 3 :

4 : 5 : 6 : Nil

7 : 8 : 9 : Nil
data DList α

instance Monoid (DList α) -- O(1) append

fromList :: [α] -> DList α -- O(1)

toList :: DList α -> [α] -- O(n)
data DList a

instance Monoid (DList a) -- O(1) append
data DList a

instance Monoid (DList a) -- O(1) append

fromList :: [a] -> DList a -- O(1)
toList :: DList a -> [a] -- O(n)
result :: [a]
result = ((((((x <> y) <> z) <> ...
result :: [a]
result = ((((((x <> y) <> z) <> ...

appended :: DList a
appended = ((((fromList x <> fromList y) <> fromList z) <> ...

result' :: [a]
result' = toList appended
$O(n^2)$

left-associated appends

list \rightarrow list
\[O(n^2) \]

left-associated appends

\[\text{list} \rightarrow \text{list} \]

\[O(n) \]

fromList

\[\text{DList} \]
\(O(n^2) \)

\[
\text{list} \quad \rightarrow \quad \text{list}
\]

left-associated appends

\(O(n) \)

\[
\text{fromList}
\]

\[
\text{DList} \quad \rightarrow \quad \text{DList}
\]

left-associated appends

\(O(n) \)
Optimisation is altering the program to get **the same answer** more efficiently.
toList is the left inverse of fromList

toList (fromList x) = x
fromList is a monoid homomorphism

\[\text{fromList} :: [a] \rightarrow \text{DList} \ a \]
fromList is a monoid homomorphism

fromList :: [a] -> DList a

fromList mempty = mempty

fromList (x <> y) = fromList x <> fromList y
x <> y <> z
\[
x \leftrightarrow y \leftrightarrow z
\]

Left inverse: \(\text{toList} \left(\text{fromList} \left(x \right) \right) = x \)
toList (fromList (x <> y <> z))

Left inverse: \[\text{toList} \ (\text{fromList} \ (x)) = x \]
toList (fromList (x <> y <> z))

Monoid homomorphism: fromList (x <> y <> z)

= fromList x <> fromList y <> fromList z
toList (fromList x <> fromList y <> fromList z)

Monoid homomorphism:

\[
\text{fromList } (x <> y <> z) = \text{fromList } x <> \text{fromList } y <> \text{fromList } z
\]
What about a world without laws?
class Default a where
 def :: a
class Default a where
 def :: a

instance Default [a] where
 def = []
class Default a where
 def :: a

instance Default [a] where
 def = []

instance Default Int where
 def = 0
orElse :: a -> Maybe a -> Maybe a
orElse d ma =
case ma of
 Just a -> a
 Nothing -> d
orElse :: a -> Maybe a -> a
orElse d ma =
case ma of
 Just a -> a
 Nothing -> d
data-default: A class for types with a default value

Versions
0.2, 0.2.0.1, 0.3.0, 0.4.0, 0.5.0, 0.5.1, 0.5.2, 0.5.3, 0.6.0, 0.7.0, 0.7.1, 0.7.1.1

Dependencies
base (>=2 && <5), data-default-class (>=0.1.2.0), data-default-instances-containers, data-default-instances-dlist, data-default-instances-old-locale [details]

License
BSD-3-Clause
acme-default: A class for types with a distinguished aesthetically pleasing value

This package defines a type class for types with certain distinguished values that someone considers to be aesthetically pleasing. Such a value is commonly referred to as a default value.

This package exists to introduce artistic variety regarding the aesthetics of Haskell’s base types, but is otherwise identical in purpose to data-default.
instance Default Int64 where
def = -1
-- | Current default -1 chosen by ertes, the largest negative number.

instance Default Int64 where
 def = -1

-- | Current default 'False' chosen by ertes, the answer to the question whether mniip has a favourite 'Bool'.

instance Default Bool where
 def = False
instance Default Int64 where
 def = -1

instance Default Bool where
 def = False

instance Default String where
 def = "Call me Ishmael. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world."
How do I know whether I obey the laws?
QuickCheck + checkers

Property-based testing for laws!
monoid :: (Monoid a, Show a, Arbitrary a, EqProp a) => a -> TestBatch
monoid :: (Monoid a, Show a, Arbitrary a, EqProp a) => a -> TestBatch

functor :: (Functor t, Arbitrary a, Arbitrary b, Arbitrary c, CoArbitrary a, CoArbitrary b, Show (t a), Arbitrary (t a), EqProp (t a), EqProp (t c)) => t (a, b, c) -> TestBatch
data Subtraction = Subt Int

-- totally dodgy
instance Monoid Subtraction where
 mempty = Subt 0
 Subt x <> Subt y = Subt (x - y)
data Subtraction = Subt Int

-- totally dodgy
instance Monoid Subtraction where
 mempty = Subt 0
 Subt x <> Subt y = Subt (x - y)

main :: IO ()
main = do
 quickBatch (monoid (Sum 0))
 quickBatch (monoid (Subt 0))
Sum monoid:
 left identity: +++ OK, passed 500 tests.
 right identity: +++ OK, passed 500 tests.
 associativity: +++ OK, passed 500 tests.

Subtraction "monoid",
 left identity: *** Failed! Falsifiable (after 2 tests)
 right identity: +++ OK, passed 500 tests.
 associativity: *** Failed! Falsifiable (after 2 tests)
Laws give rise to useful functions

Laws allow us to refactor more

Laws help us to optimise
Laws are the difference between an **overloaded name** and an **abstraction**
Thanks for listening!
References

- Daniel J. Velleman “How To Prove It”
- Tom Ellis “Demystifying DList”
 http://h2.jaguarpaw.co.uk/posts/demystifying-dlist/
- Edward Kmett “Why not Pointed?”
 https://wiki.haskell.org/Why_not_Pointed%3F
- Tim Humphries “Continuations All The Way Down”
- Edward Kmett “The Free Theorem for fmap”
 https://www.schoolofhaskell.com/user/edwardk/snippets/fmap
What’s up with Foldable?

It sort of has laws.

- Gershom Bazerman wrote a paper:
- Then started a mailing list discussion:
 https://mail.haskell.org/pipermail/libraries/2015-February/024943.html
- ...and then another one:
 https://mail.haskell.org/pipermail/libraries/2018-May/028761.html
Are there reasonable cases of law breakage?
Are there reasonable cases of law breakage?

Yes! Both QuickCheck and hedgehog break the Applicative and Monad laws.